
 

 

 

Level Rescheduling for Automotive Mixed-Model Assembly Lines 

with Selectivity Banks  

Yingmeng Ji, Hui Sun +  

Department of Industrial Engineering, Southeast University, Nanjing, China  

Abstract. This paper studies a level rescheduling (LRS) problem, in which a selectivity bank is utilized to 

reshuffle an incoming car sequence prior to final assembly. The objective is to achieve evenly distributed 

material requirements over the planning horizon. A mathematical programming model is presented to 

describe the problem. Aimed at rapidly finding good solutions to this NP-hard problem, several heuristic 

solution procedures, which can be applied in the car storage and release processes respectively, are developed. 

Computational experiments show that both rule-based and algorithm-based procedures can solve the LRS 

problem effectively and efficiently. Furthermore, algorithm-based procedures produce noticeably better 

outcomes. 

Keywords: mixed-model assembly line, level scheduling, resequencing, selectivity bank, genetic 

algorithm, beam search. 

1. Introduction  

Nowadays, mixed-model assembly lines (MMALs) are widely used in automotive manufacturing. On an 

automotive MMAL, different models of a common base product (car) are manufactured in intermixed 

sequences. Thus, it raises an imperative challenge in determining the sequence of car models launched down 

MMALs. In general, there are two different basic sequencing objectives, i.e., minimizing work overload and 

leveling part usage [1]. Both objectives stem from the production requirements of workstations in final 

assembly shops, where substantial manual operations are performed. 

However, the above objectives do not consider the sequencing requirements of other departments such as 

body and paint shops. Body shops may need to follow a repetitive pattern of models, while paint shops 

normally desire car sequences with less frequent color changes [2]. Thus, in order to fully address the 

requirement of each department, a practical solution known as resequencing is to alter the incoming 

production sequence based on the requirement of a downstream department. 

Two general forms of resequencing in the context of MMALs, i.e., virtual resequencing and physical 

resequencing, can be utilized [3]. When a virtual resequencing for automotive MMALs is applied, the initial 

car sequence remains unchanged and only the assignment of cars to customer orders is altered [4-6]. While 

in physical resequencing, some kind of resequencing buffer is operated to physically change the car sequence. 

Several buffer types such as automated storage and retrieval system (AS/RS), pull-off tables, and selectivity 

bank are reported in the literature [2-3]. Among them, selectivity bank is the most widely used buffer system 

due to low investment cost and relatively good resequencing performance. 

Selectivity banks can be used for color batching in paint shops [7-10]. Besides, they can be employed 

before final assembly for reactive sequence restoration [11-12] and proactive sequence alternation [13-15]. 

So far, very few studies have discussed the intentional resequencing with selectivity banks based on the 

objective of leveling part usage, which is in line with the famous just-in-time (JIT) philosophy. References 

[13] and [14] presented heuristic rules for accomplishing this objective in the dynamic environment, whereas 

how to smooth part requirements in a static environment has not been investigated. Therefore, in-depth 

research on resequencing for leveling part usage is of particular importance, since facilitating JIT-part supply 

is a big concern for most of automotive manufacturers. 

 
+  Corresponding author. Tel.: +86 25 52090501; fax: +86 25 52090504. 

   E-mail address: hui.sun@seu.edu.cn. 

813

ISBN: 978-981-18-5852-9

WCSE 2022 Spring Event: 2022 9

6

th International Conference on Industrial Engineering and Applications

doi: 10.18178/wcse.2022.04.09



  

( )
1 1

2

    1,..., 1; 1,..., ; 1,...,

T T

it jt il jlt t
x t x t BI y y

i T j i T l L

= =
 −    − −

 = − = + =

 

Dedicated to leveling part usage, level scheduling (LS) is one of three major sequencing approaches [1] 

[16] [17]. This paper studies a resequencing problem with selectivity banks prior to final assembly in the 

context of automobile MMALs. The objective of resequencing is the same as LS, i.e., to obtain evenly 

distributed part requirements induced by the production sequence over the planning horizon. 

The remainder of this paper is organized as follows. Section 2 presents a detailed description and a 

mathematical programming formulation for the level rescheduling (LRS) problem under study. Section 3 

proposes several heuristic rules and algorithms to solve the problem. In Section 4, computational 

experiments are carried out to test the performance of the proposed solution procedures. Finally, concluding 

remarks are given in Section 5.  

2. Problem Description 

Figure 1 illustrates a selectivity bank that consists of 4 parallel lanes each having 5 spaces. While 

arriving at the point S in front of the bank, each car in the upstream sequence selects a lane to enter. 

Meanwhile, on the other end next to the downstream department cars are released successively from the bank. 

Note that cars in each lane must be released following the first-in-first-out (FIFO) rule, and cars in different 

lanes can be released alternately. The initial car sequence can thus be changed. 

 

 

 

 

 
Fig. 1: A 4×5 selectivity bank with 4 lanes each having 5 spaces. 

Consider a sequence of T cars from the upstream paint shop, each of which belongs to a model m (m ∈ 

M) demanding a specific set of parts to be installed in the final assembly shop. A selectivity bank with L 

lanes each having W spaces (L×W≥T) is employed to permute the incoming car sequence with the 

objective of leveling the part usage within the output sequence. Furthermore, the selectivity bank is assumed 

to be initially empty, which implies that all the cars can be stored in the bank simultaneously. Referring to 

[15], with the notations listed in Table 1 the part-oriented LRS problem based on selectivity banks can be 

formulated as follows. 

Minimize 

                                                                                                                         (1) 

Subject to 

                                                              (2) 

 
 (3) 

 
                                                      (4)  
 
                                                                    (5) 
  

 

                                                    (6) 

 

                                                     (7) 

 

                                             (8)  

1
1    1,...,

T

iti
x t T

=
=  =

1
1    1,...,

T

itt
x i T

=
=  =

1
1    1,...,

L

ill
y i T

=
=  =

1
    1,...,

T

ili
y W l L

=
  =

( )'' 1 1

    1,..., ; 1,...,

t T

pt it im mpt i m M
z x c b

t T p P

= = 
=  

 = =

  

 , 0,1     , 1,..., ; 1,...,
it il

x y i t T l L  = =

( )
2

1

T

pt pt p P
D z r t

= 
= −  

Upstream 

sequence

Downstream 

sequence

S

814



  

Objective (1) minimizes the sum over all deviations of actual from target cumulative demands per 

production cycle t and part p resulting from the output sequence. Constraints (2) ensure that each position 

(i.e., cycle) of the downstream sequence receives exactly one car from the upstream sequence, while 

constraints (3) guarantee that each car is assigned to exactly one position within the downstream sequence. 

Constraints (4) ensure that each car in the upstream sequence is dispatched to exactly one lane of the 

selectivity bank. Constraints (5) ensure that each lane’s capacity W is not exceeded. Constraints (6) ensure 

that for any two cars i and j with i < j in the upstream sequence, car i must precede j in the downstream 

sequence if they are dispatched to the same lane. Thus, the FIFO rule will not be violated. Constraints (7) 

determine the actual cumulative part demands. Constraints (8) define two binary decision variables xit and yil. 

When the number of lanes L is greater than or equal to T, there is no restriction in assigning cars to 

positions within the output sequence. Thus, the LRS problem turns into a classical level scheduling problem, 

which was shown to be NP-hard [18]. In order to deal with its computational intractability, we present 

several heuristic solution procedures. 

Table 1:  Notation 

Notation Description 

T 
Number of production cycles (and cars) within the initial 

sequence, indices t (i respectively) = 1, …, T 

P Set of parts, index p 

M Set of models, index m 

L Number of lanes in the selectivity bank, index l = 1, …, L 

W Number of spaces in each lane, index w = 1, …, W 

BI A very big integer 

bmp Number of part p demanded by a car of model m 

cim 
Binary parameter: 1, if the model of car i in the upstream 

sequence is m; 0 otherwise 

dm Demand for cars of model m 

rp Target consumption rate of part p,  ( ) /
p m mpm M

r d b T


=   

xit 
Binary decision variable: 1, if car i is assigned to position 

t of the downstream sequence; 0 otherwise 

yil 
Binary decision variable: 1, if car i is stored in lane l of 

the selectivity bank; 0 otherwise 

zpt 
Number of part p demanded by the cars assigned to the 

first t production cycles of the downstream sequence 

 

3. Solution Methods 

During the resequencing process with selectivity banks, two types of decisions, i.e., lane selection in the 

storage stage and car selection in the release stage, need to be made. Corresponding solution procedures for 

the two stages can be jointly applied to solve the LRS problem. In the following several heuristic rules and 

algorithms are presented. 

3.1. Heuristic rules 

We present a storage rule and two release rules as described below. The storage rule can be used for the 

lane selection, and the release rules can be employed for the car selection. 

1) Storage rule 

The spaces within a selectivity bank can be grouped into blocks in terms of their coordinates. For 

example, spaces in the same row or column (as depicted in Figure 2) can be considered in one block. A block 

is marked safe if the actual demand for each part (say p) by the cars currently located within this block is 

below the target demand, which is determined by rp ∙ Ns. Here rp is the target consumption rate of part p and 

815



  

Ns is the number of spaces within this block. When a car arrives at the bank, the following storage rule can be 

applied to assign a lane for the car to enter. 

⚫ Storage rule: select the safe block with the highest priority and dispatch the incoming car to an 

empty space within the block. Otherwise dispatch the car to an empty space within the block with 

the highest priority. 

The storage rule attempts to construct multiple good car subsequences within the selectivity bank so as to 

facilitate the following release process. Note that for the multiple blocks built by columns (as shown in 

Figure 2(a)), the block closest to the downstream department has the highest priority. While for the blocks 

formed by rows (as shown in Figure 2(b)), they can be prioritized based on the index numbers of the 

associated lanes. Additionally, when there are multiple available empty spaces in the same column within a 

block, randomly choose one. 

 

 

 

 

 

 
Fig. 2: Blocks consisting of spaces in a selectivity bank.  

The storage rule attempts to construct multiple good car subsequences within the selectivity bank so as to 

facilitate the following release process. Note that for the multiple blocks built by columns (as shown in 

Figure 2(a)), the block closest to the downstream department has the highest priority. While for the blocks 

formed by rows (as shown in Figure 2(b)), they can be prioritized based on the index numbers of the 

associated lanes. Additionally, when there are multiple available empty spaces in the same column within a 

block, randomly choose one. 

2) Release rule 

Consider a selectivity bank filled with T cars. The following two rules, i.e., greedy-based rule and block-

based rule, can be used to release the cars successively to the downstream department. 

The greedy-based rule iteratively chooses a car to be released next from a candidate set S, which 

involves all the cars currently at the departure end of each lane. Specifically, at each iteration t (t = 1, …, T), 

the rule selects the car in S that incurs the smallest increase in the objective value (∆D) of the downstream 

sequence. ∆D is calculated by 

 

    .                                                                 (9)    

On the other hand, corresponding to the storage rule, block-based rule can be applied to release cars 

block by block. Specifically, for the blocks generated by columns, cars within each block are released 

successively based on the same greedy rule as above. While for the blocks generated by rows, only the cars 

at the departure end of the selectivity bank need to be selected via the greedy rule. 

3.2. Heuristic algorithms 

This section presents a genetic algorithm (GA) and two beam search (BS) algorithms. The GA is used to 

search for different schemes of car arrangement within the selectivity bank, and the BS algorithms are used 

to find the best output sequence given a car arrangement. 

1) Genetic algorithm 

Invented by John Holland in 1960s, GA is a biologically-inspired metaheuristic for optimization. This 

paper presents a GA that can be used to seek for the best car arrangement within a selectivity bank. 

Algorithm 1 shows the pseudocode of the proposed GA. 

 

( )
2

pt pp P
D z r t


 = − 

(a) Blocking by columns (b) Blocking by rows

816



  

Algorithm 1: Genetic Algorithm 

1: Initialize population 

2: While iteration < iterationmax 

3:       Calculate the fitness of individuals 

4:       Select parental population  

5:       Perform crossover operations  

6:       Perform mutation operations 

7:   Replace selected individuals with the best car 

arrangement found so far 

8:       iteration = iteration + 1  

9: End 

10: Return the best car arrangement 

 

An individual (chromosome) in Algorithm 1 corresponds to a car arrangement within a L×W selectivity 

bank. It consists of L subsequences, each of which involves W position indices of cars (in the upstream 

sequence) that are dispatched to the same lane. Figure 3 shows an individual representing the arrangement of 

9 cars within a 3×3 selectivity bank. During initialization individuals are generated randomly. The fitness 

function is defined by  

 ( )Fitness 1 / 1D= + ,                                                              (10) 

where D is the objective function value of the optimal output sequence resulting from a given car 

arrangement. Apparently a car arrangement with a larger fitness value is preferred. 

 

 

 

 
Fig. 3: A chromosome consisting of 3 subsequences. 

The selection algorithm used in the proposed GA is roulette wheel, which is based on the principle that 

the probability for being selected is proportional to the fitness of a solution. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: An illustrative example of two-point crossover. 

Two-point crossover is applied in the GA. Each individual i in the population is checked to see whether 

or not crossover operation should be conducted. If it is needed, another individual j in the population is 

chosen randomly. Then replace the genes (i.e., index numbers of cars) between two arbitrarily selected points 

(say a and b) of i with the corresponding genes of j to generate an offspring solution. Finally, substitute the 

missing genes in i after replacement for the duplicated genes in the offspring solution. As illustrated in 

Figure 4, cars 1 and 9 take the place of cars 4 and 5, respectively. 

147289356

Lane 3 Lane 2 Lane 1

467289135Individual i

197284356

Lane 3 Lane 2 Lane 1

167284359

Individual j

(selected randomly)

Offspring solution

ab

Lane 3 Lane 2 Lane 1

Lane 3 Lane 2 Lane 1

817



  

Furthermore, an individual can also be considered as a L×W matrix composed of the position indices of 

cars in the initial sequence. Therefore, while performing the mutation operation, a new solution can be 

generated by transposing the elements of the first min{L, W} rows and columns in the original matrix. Note 

that here rows are numbered successively with the index numbers of lanes, and columns are numbered 

consecutively from the departure to arrival ends of the selectivity bank. Figure 5 shows that a new solution is 

obtained by transposing the original 3×3 gene matrix. 

Finally, at the end of each iteration, replace a few individuals selected randomly with the best solution 

found so far, which guarantees that the best solution is always in the population. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: An illustrative example of mutation operation. 

2) Beam search 

BS is a truncated graph search heuristic. Originally introduced in solving the speech recognition 

problems [18], BS has been implemented successfully in multiple fields such as speech recognition [18], 

machine translation [19], and scheduling and sequencing [20-21]. 

Based on a tree representation of the search process, BS starts with the root node of stage 0, then 

constructs the search tree step by step. At each stage, it creates all successors of the current nodes. However, 

only a predetermined number (known as the beam width, BW) of promising nodes are identified by heuristic 

and retained for further branching. The construction steps are repeated until the final stage is reached. The 

best solution returned is the result of BS. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: A graph describing the release process from a 2×2 selectivity bank.  

Still consider a selectivity bank filled with T cars. Aiming at quickly finding the optimal or near-optimal 

output sequence, this paper presents two BS algorithms, namely, greedy-based BS and global-based BS. 

Both algorithms are based on the same graph structure, and the difference between them lies in the filtering 

process. The graph in Figure 6 illustrates the release process given a 2×2 selectivity bank filled with 4 cars. 

467

289

135

Gene matrix

124

386

597

New matrix

124368579

467289135

Lane 3 Lane 2 Lane 1

Individual 1

New individual 

(after mutation)

Transpose

Lane 3 Lane 2 Lane 1

Lane released 

[2 2]

[1 2]

[2 1]

1 

2 

[0 2]

[1 1]

[2 0]

[0 1]

[1 0]

[0 0]

[Residual in each lane]

1 

2 

1 

2 

2 

1 

2

2

1 

1

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

818



  

The nodes at each stage represent all possible states indicating the current car arrangement within the bank. 

An arc connecting two nodes at stages t and t−1 indicates a state transition between them, and also specifies 

the lane from which a car is released during this transition. 

a) Greedy-based search 

At each stage t (t = 1, …, T), all generated nodes are ranked in ascending order of the total deviation (Dt) 

of actual from target cumulative part demands associated with the partial downstream sequence constructed 

so far, which can be calculated using the objective function (1). A fixed percentage (say g%) of BW nodes 

corresponding to the first smallest Dt values are then retained, and the remaining 1−g% of BW nodes are 

chosen randomly with the intention of reducing the myopic behaviour of the greedy selection. 

b) Global-based search 

At each stage t (t = 1, …, T), all nodes newly generated are ranked in ascending order of Et, which is 

calculated by 

 
t t t

E D K= + . (11) 

Then the nodes corresponding to the first smallest Et values are kept for further branching. Here Et in (11) 

represents an estimated total deviation of actual from target cumulative part demands within the final output 

sequence. Dt, as defined earlier, is the total deviation of part demands resulting from the partial sequence 

constructed until now, while Kt estimates the total deviation of part demands caused by unreleased cars. 

Assume that ideally the actual demand for each part p within each of the remaining T−t production cycles is 

a constant rp
′
, i.e., rp

′
 = np / (T−t), where np denotes the number of part p required by the unreleased cars. Kt 

is calculated by 

,                                                       (12) 

where ept' represents the estimated actual demand for part p until stage t', 

 ' '
e ( ' ) 0.5

pt p pt
t t r q= −  + +   .  (13) 

Here qpt is the actual demand for part p up to stage t. Apparently, during the filtering process the global-

based BS attempts to evaluate the nodes from a global viewpoint. 

4. Computational Experiments 

Computational experiments are conducted to test the performance of the heuristic rules and algorithms 

proposed in this paper. The parameter values used in generating problem instances are given in Table 2. For 

each of 18 combinations of T, M, and P, 10 problem instances are generated. The models are assumed to be 

uniformly distributed within the initial sequence. In addition, as suggested by Aigbedo and Monden [23], 

assume that the demand for each part installed on a car unit of a specific model is 0, 1, 2, 3, or 4, and the 

quantity is determined based on a probability function of (0.400, 0.410, 0.150, 0.038, 0.002). Corresponding 

to the T values, three selectivity banks with different configurations (L×W) are used for resequencing 

respectively. 

Table 2:  Parameters Used in Experiments 

Parameter Notation Values 

Number of cars T 30, 56, 100 

Number of models M 5, 10, 20 

Number of parts P 10, 20 

Bank configuration L×W 5×6, 7×8, 10×10 

 

All solution procedures are coded in C++ language with Microsoft’s Visual Studio 2015 complier. 

Experiments are run on a 1.80 GHz PC with 16.0 GB RAM. For the GA algorithm, the population size is set 

to 20, the number of generations is set to 15. The crossover probability and mutation probability are set to 

0.9 and 0.2, respectively. At the end of each iteration, one individual chosen arbitrarily is replaced with the 

( )
2

'' 1
e '

T

t pt pt t p P
K r t

= + 
= −  

819



  

best car arrangement found so far. Besides, the beam width BW in the two BS algorithms is set to 20. While 

applying the greedy-based BS, only one node at each stage is selected randomly for further branching. The 

determination of these parameters are based on existing literature (e.g., [15]) and a series of numerical 

experiments. Four rule-based resequencing methods (as displayed in Table 3) are generated by combining 

the presented storage and release rules. Additionally, two algorithm-based resequencing methods are brought 

by coupling the GA with the BS algorithms. All 180 instances are solved using each of the six combined 

procedures. 

Table 3:  Rule-based Resequencing Methods 

Rule-based Method Storage Rule Release Rule 

Method 1 
Storage with blocks 

built by columns 
Greedy-based release 

Method 2 
Storage with blocks 

built by rows 
Greedy-based release  

Method 3 
Storage with blocks 

built by columns 
Block-based release 

Method 4 
Storage with blocks 

built by rows 
Block-based release 

 

For each combination of T, M, and P, the averaged objective values over 10 instances associated with 

each solution procedure are recorded, and the corresponding percentage reductions in the objective value 

after resequencing are listed in Table 4. It shows that all the four rule-based procedures can effectively 

improve the part usage rates of the initial sequences, resulting in a noticeable reduction (from 22% to 78%) 

in the objective value. Besides, method 1 has the best overall performance, followed by methods 3, 2, and 4. 

On the other hand, it displays that the two algorithm-based procedures produce comparable results for all 

instances in acceptable running times. Moreover, both procedures obtain substantially better part usage rates 

derived from the downstream sequences, resulting in an impressive reduction of at least 79% in the objective 

value. Apparently, the rule-based procedures are inferior to the algorithm-based procedures in resequencing 

result, however they can solve the LRS problem instances in a much shorter time duration of less than 0.5 s. 

Table 4:  Results of Six Resequencing Procedures 

(T, M, P) 

Ave. 

Obj. 

Value 

before 

Reseq. 

Rule-based 

Method 1 

Rule-based 

Method 2 

Rule-based 

Method 3 

Rule-based 

Method 4 

GA +  

Greedy-based BS 

GA +  

Global-based BS 

% reduction in 

ave. obj. value 

after reseq. 

% reduction in 

ave. obj. value 

after reseq. 

% reduction in 

ave. obj. value 

after reseq. 

% reduction in 

ave. obj. value 

after reseq. 

% 

reduction 

in ave. obj. 

value after 

reseq. 

Ave. 

CPU 

time 

(s) 

% 

reduction 

in ave. obj. 

value after 

reseq. 

Ave.  

CPU 

time 

(s) 

(30, 5, 10) 714.90 77.9% 54.3% 72.8% 52.0% 90.7% 5.90 90.7% 6.60 

(30, 10, 10) 885.62 57.5% 35.7% 52.7% 31.9% 85.1% 5.68 85.1% 6.56 

(30, 20, 10) 1044.11 62.3% 52.5% 37.2% 41.1% 84.8% 5.58 85.2% 6.53 

(30, 5, 20) 1634.21 66.3% 51.2% 60.9% 66.9% 90.7% 5.94 90.7% 6.99 

(30, 10, 20) 1640.12 58.6% 41.7% 36.7% 29.4% 81.3% 5.84 81.4% 7.13 

(30, 20, 20) 2155.77 62.6% 45.7% 38.5% 42.5% 79.0% 5.75 79.7% 7.21 

(56, 5, 10) 3103.00 65.6% 64.3% 74.2% 41.2% 92.6% 22.87 92.8% 24.68 

(56, 10, 10) 3523.75 63.2% 65.3% 57.6% 21.6% 91.6% 22.95 91.6% 25.40 

(56, 20, 10) 2883.43 61.8% 61.4% 46.8% 39.9% 89.6% 22.20 90.1% 25.55 

(56, 5, 20) 5139.24 68.9% 65.9% 77.5% 48.1% 94.0% 22.70 94.3% 27.43 

(56, 10, 20) 8832.04 72.0% 59.4% 54.7% 50.2% 91.4% 22.21 91.5% 27.12 

(56, 20, 20) 7035.78 62.0% 57.7% 43.2% 26.8% 84.8% 22.22 85.3% 28.76 

(100, 5, 10) 6528.96 69.5% 68.7% 69.9% 60.0% 96.0% 78.76 96.2% 88.43 

(100, 10, 10) 8164.32 71.6% 52.5% 63.2% 52.4% 93.9% 78.22 94.7% 89.33 

(100, 20, 10) 10744.49 76.4% 67.3% 53.0% 55.3% 94.9% 81.62 95.2% 90.16 

(100, 5, 20) 16272.30 64.8% 53.2% 72.2% 58.2% 95.5% 80.01 95.7% 100.67 

(100, 10, 20) 15516.92 71.6% 45.6% 46.2% 22.9% 91.7% 79.30 93.2% 99.21 

(100, 20, 20) 24248.09 76.4% 65.6% 47.5% 42.7% 92.0% 74.91 92.8% 98.47 

820



  

In summary, the proposed heuristic rules and algorithms can be jointly applied to solve the LRS problem 

effectively and efficiently. Furthermore, the algorithm-based procedures perform significantly better than the 

rule-based procedures. 

5. Summary and Conclusions 

This paper studies the LRS problem prior to automotive final assembly with selectivity banks. A 

mathematical programming model was presented to describe the problem. Several heuristic rules and 

algorithms that can be applied in the car storage and release stages respectively were developed. Numerical 

experiments were carried out to evaluate the performance of the proposed solution procedures. It was shown 

that they can be jointly applied in resequencing, so that the part usage rates in initial sequences can be 

effectively improved after permutation. Besides, the solution approaches combining the GA and BS 

algorithms significantly outperform the rule-based solution approaches. 

In the future, research efforts can be made to improve the algorithms proposed in this paper. Specifically, 

for the GA algorithm, different coding methods and genetic operations can be considered. While for the BS 

algorithms, iterated search can be performed, meanwhile a strongly tightened lower bound of the objective 

value associated with a beam node needs to be determined. On the other hand, further exploration of more 

complex scenarios of resequencing with selectivity banks, such as multi-objective resequencing or real-time 

resequencing, would also be a valuable contribution. 

6. References 

[1] N. Boysen, M. Fliedner, and A. Scholl. Sequencing mixed-model assembly lines: Survey, classification and model 

critique. Eur. J. Oper. Res. 2009, 192(2): 349-373. 

[2] F. Ding, and H. Sun. Sequence alteration and restoration related to sequqenced parts delivery on an automobile 

mixed-model assembly line with multiple departments. Int. J. Prod. Res. 2004, 42(8): 1525-1543. 

[3] N. Boysen, A. Scholl, and N. Wopperer. Resequencing of mixed-model assembly lines: Survey and research 

agenda. Eur. J. Oper. Res. 2012, 216(3): 594-604. 

[4] T. Epping, W. Hochstattler, and P. Oertel. Complexity results on a paint shop problem. Discrete Appl. Math. 2004, 

136(2-3): 217-226. 

[5] Y. Xu, and J. Zhou. A virtual resequencing problem in automobile paint shops. In: E. Qi, J. Shen, and R. Dou 

(eds.). Proc. of the 22nd International Conference on Industrial Engineering and Engineering Management: Core 

Theory and Applications of Industrial Engineering. Paris: Atlantis Press. 2016, pp. 71-80. 

[6] C. Cao, and H. Sun. Virtual level rescheduling for automotive mixed-model assembly lines with beam search 

algorithms. In: Proc. of 2019 IEEE 6th International Conference on Industrial Engineering and Applications. New 

York: IEEE. 2019, pp. 225-229. 

[7] S. Spieckermann, K. Gutenschwager, and S. Voß. A sequential ordering problem in automotive paint shops. Int. J. 

Prod. Res. 2004, 42(9): 1865-1878. 

[8] H. Sun, and J. Han. A study on implementing color-batching with selectivity banks in automotive paint shops. J. 

Manuf. Syst. 2017, 44: 42-52. 

[9] J. Leng, C. Jin, A. Vogl, and H. Liu. Deep reinforcement learning for a color-batching resequencing problem. J. 

Manuf. Syst. 2020, 56: 175-187. 

[10] S. Bysko, J. Krystek, and S. Bysko. Automotive Paint Shop 4.0. Comput. Ind. Eng. 2020, 139: 105546. 

[11] X. Fournier and B. Agard. Improvement of earliness and lateness by postponement on an automotive production 

line. Int. J. Flexible Manuf. Syst. 2007, 19(2): 107-121. 

[12] S. Meissner. Controlling in just-in-sequence flow-production. Logistics Research. 2010, 2(1): 45-53. 

[13] W. Choi, and H. Shin. A real-time sequence control system for the level production of the automobile assembly 

line. Comput. Ind. Eng. 1997, 33(3-4): 769-772. 

[14] D. Moon, C. Song, and J. Ha. A dynamic algorithm for the control of automotive painted body storage. Simulation. 

2005, 81(11): 773-787. 

821



  

[15] N. Boysen, and M. Zenker. A decomposition approach for the car resequencing problem with selectivity banks.  

Comput. Oper. Res. 2013, 40(1): 98-108. 

[16] W. Kubiak. Minimizing variation of production rates in just-in-time systems: A survey. Eur. J. Oper. Res. 1993, 

66(3): 259-271. 

[17] T. Dahmala, and W. Kubiak. A brief survey of just-in-time sequencing for mixed-model systems. Int. J. Oper. Res. 

2005, 2(2): 38-47. 

[18] Z. Jin, and F. Ding. A transformed two-stage method for reducing the part-usage variation and a comparison of the 

product-level and part-level solutions in sequencing mixed-model assembly lines. Eur. J. Oper. Res. 2000, 127(1): 

203-216. 

[19] B. Lowerre. The Harpy Speech Recognition System. PhD thesis. 1976. 

[20] P. Koehn. Pharaoh: A beam search decoder for phrase-based statistical machine translation models. In: R. E. 

Frederking, and K.B. Taylor (eds.). Machine Translation: From Real Users to Research. AMTA 2004. Lecture 

Notes in Computer Science. Berlin, Heidelburg: Springer. 2004, pp. 115-124. 

[21] I. Sabuncuoglu, and M. Bayiz. Job shop scheduling with beam search. Eur. J. Oper. Res. 1999, 118(2): 390-412.  

[22] E. Erdal, G. Yasin, and S. Ihsan. Mixed-model assembly line sequencing using beam search. Int. J. Prod. Res. 

2007, 45(22): 5265-5284. 

[23] H. Aigbedo, and Y. Monden. A simulation analysis for two-level sequence-scheduling for just-in-time (JIT) 

mixed-model assembly lines. Int. J. Prod. Res. 1996, 34(11): 3107-3124. 

 

 

822


